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What Is Computation?

B. Jack Copeland

ABSTRACT

To compute is to execute an algorithm. More precisely, to say that a device or

organ computes is to say that there exists a modelling relationship of a certain

kind between it and a formal specification of an algorithm and supporting

architecture. The key issue is to delimit the phrase 'of a certain kind'. I call

this the problem of distinguishing between standard and nonstandard models

of computation. The successful drawing of this distinction guards Turing’s

1936 analysis of computation against a difficulty that has persistently been

raised against it, and undercuts various objections that have been made to the

computational theory of mind.
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I

In 1936 Turing published his now famous analysis of the concept of

computation.1 It is true to say that this analysis has become standard in

mathematical logic and the sciences. However, there is in the philosophical

literature a certain class of problem cases which forms the basis of an

objection to Turing's analysis. The thrust of the objection is that although

Turing’s account may be necessary it is not sufficient. If it is taken to be

sufficient then too many entities turn out to be computers. The objection

carries an embarrassing implication for computational theories of mind: such

theories are devoid of empirical content. If virtually anything meets the

requirements for being a computational system then wherein lies the

explanatory force of the claim that the brain is such a system?

I aim to meet the objection. According to the point of view to be put

forward here, to compute is to execute an algorithm. More precisely, to say

that a device or organ computes is to say that there exists a modelling

relationship of a certain kind between it and a formal specification of an

algorithm and supporting architecture. The key issue is to delimit the phrase

'of a certain sort'. For want of a better terminology I describe the problem to

be addressed as that of distinguishing between standard and nonstandard

models of computation. Prominent attempts to deal with the problem involve

modification of Turing's analysis (for example Goel 1991 and 1992, Searle

1990 and 1992, Smith 199-, Sterelny 1990). In my view this is both

undesirable and unnecessary. My intention here is to uphold the sufficiency

of Turing’s analysis.2
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A recent presentation of the objection is to be found in Searle 1992 (see

also Searle 1990, pp.25-27).

[T]he original definitions given by Alan Turing.␣.␣. [form] the

standard definition of computation.␣. ␣. (pp.205-6) On the

standard.␣.␣. definition of computation it is hard to see how to

avoid the following results: 1. For any object there is some

description of that object such that under that description the

object is a digital computer. 2. For any program and for any

sufficiently complex object, there is some description of the

object under which it is implementing the program. Thus for

example the wall behind my back is right now implementing the

Wordstar program, because there is some pattern of molecule

movements that is isomorphic with the formal structure of

Wordstar. But if the wall is implementing Wordstar, then if it is a

big enough wall it is implementing any program, including any

program implemented in the brain.␣.␣. (pp.208-209) I think it is

possible to block the result of universal realisability by

tightening up our definition of computation.␣.␣. [A] more realistic

definition of computation will emphasise such features as the

causal relations among program states, programmability and

controllability of the mechanism, and situatedness in the real

world. (p.209)

A much discussed problem case, in its essentials identical to Searle's, is

due to Ian Hinckfuss. (Hinckfuss presented the problem case - which is now

popularly known as 'Hinck's pail' - in discussion at the Australasian
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Association of Philosophy Conference, Canberra, 1978.) Here is Bill Lycan’s

engaging description of it.

Suppose a transparent plastic pail of spring water is sitting in

the sun. At the micro level, a vast seething complexity of things

are going on: convection currents, frantic breeding of bacteria

and other minuscule life forms, and so on. These things in turn

require even more frantic activity at the molecular level to

sustain them. Now is all this activity not complex enough that,

simply by chance, it might realize a human program for a brief

period (given suitable correlations between certain micro-events

and the requisite input-, output-, and state-symbols of the

program)? And if so, must the functionalist not conclude that the

water in the pail briefly constitutes the body of a conscious

being, and has thoughts and feelings and so on? Indeed, virtually

any physical object under any conditions has enough activity

going on within it at the molecular level that, if Hinckfuss is right

about the pail of water, the functionalist quickly slips into a

panpsychism.␣.␣. (Lycan 1981, p.39.  See also Lycan 1987.)

I shall argue that Searle is right in his claim that there is some pattern

of physical activity in the wall (or bucket, etc) that is 'isomorphic with the

formal structure' of any given instance of computation (for example a ten

minute session with Wordstar). From this claim a proposition easily mistaken

for one entailing Searle's theses 1. and 2. does validly follow.
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II

This section offers an intuitive account of when it is true to say that an

entity e - real or conceptual, artefact or natural - is computing a given

function. Let f be the function and let å be an architecture-specific algorithm

that takes arguments of f as inputs and delivers values of f as outputs.

An algorithm is a 'mechanical' or 'moronic' procedure for achieving a

specified result (in the case of å, of course, the specified result is arriving at

the values of f). That is to say, an algorithm is a finite list of machine-

executable instructions such that anyone or anything that correctly follows

the instructions in the specified order is certain to achieve the result in

question. To say that å is specific to an architecture is to say not only that a

machine with this architecture can run å but also that each instruction in å

calls explicitly for the performance of some sequence of the primitive (or

'atomic') operations made available in the architecture. (The sequence may

consist of a single operation.) Thus an algorithm at least one of whose

instructions calls explicitly for a multiplication cannot be specific to an

architecture that has addition but not multiplication available as a primitive.

A program calling for multiplications can run on such an architecture only

because the compiler (or equivalent) replaces each multiplication instruction

in the program by a series of addition instructions.

The primitive operations that are available vary from architecture to

architecture. To give some examples: - If the architecture in question is a

Turing machine then å will be a Turing machine table. The primitive

operations include: move the tape left one square; read the symbol beneath

the head; replace the symbol beneath the head by 0. If the architecture in
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question is that defined by a particular assembly language (an assembly

language is an architecture-specific programming language) then å will be a

program in that language. The primitive operations that are available may

include: adding the binary numbers in a specified pair of registers and storing

the result in a specified register; shifting the bits in a specified register one

place to the right (the bit at the far right 'falls out' and 0 is fed in at the left);

taking the logical conjunction of whatever binary strings occur in a specified

pair of registers and storing the result in a specified register (the logical

conjunction of, for example, 1100 and 1010 is 1000). Where the architecture

in question is a neural net with a particular pattern of connectivity and

certain weights on the connections, å consists of step-by-step applications of

a certain propagation rule and a certain activation rule. (A propagation rule

calculates the total weighted input into an artificial 'neuron' and an activation

rule calculates what the activity level of the 'neuron' is to be, given its total

weighted input.) In such an architecture steps are, of course, carried out in

parallel: the execution of an algorithm is not necessarily a sequential

procedure.3

Suppose one has a formal specification of the architecture in question

and of the algorithm å, call it SPEC. For definiteness, let SPEC take the form of

a set of axioms, although nothing in what follows turns on the use of the

axiomatic method as opposed to some other style of formalisation. (In the

next section I give a simplified example of such an axiom set.) So on the one

hand we have SPEC, a description of a machine, and on the other we have the

entity e. How do we bridge the gap and say that e is such a machine (at the

time in question)? The bridge is effected by means of a system of labelling for

e. (The concept of a labelling of a device is also used by Gandy 1980 and
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Deutsch 1985.) For example, labels may be eight binary digits long and be

associated with groupings of subdevices in the following way: the possible

states - measured in volts, say - of these subdevices are divided into two

mutually exclusive classes and a state is labelled '0' if it falls into the first, '1'

if it falls into the second. (No privilege is accorded to the binary system: labels

may equally well be n-tuples of real numbers.) Thus a labelling scheme for an

entity consists of two parts: (1) the designation of certain parts of the entity

as label-bearers, and (2) the method for specifying the label borne by each

label-bearing part at any given time.

The idea, of course, is that the labels constitute a 'code' such that spatial

or temporal sequences of labels have semantical interpretations. In explaining

the behaviour and function of the labelled entity one ascribes the semantical

interpretation associated with the labels directly to the labelled states

themselves. To take a simple example, if the voltage across one member of a

pair of flipflops is 9.4 mV and across the second is 1.6mV the pair may be

labelled <High, Low> or <1, 0> and be described as 'representing' or 'storing'

the number two.

When the formal axioms in SPEC are true of an entity e under a

labelling scheme L the ordered pair <e, L> will be called a model of SPEC. Here,

then, is the promised intuitive account:

Entity e is computing function f if and only if there exist a labelling

scheme L and a formal specification SPEC (of an architecture and an

algorithm specific to the architecture that takes arguments of f as inputs

and delivers values of f as outputs) such that <e, L> is a model of SPEC.



8

(A sentence of the form 'There exists a function f such that . . .' may be true

irrespective of whether it is known to be true. I use the phrase 'there exist a

labelling scheme and a formal specification such that' in the same way.)

To gain a feel for what is being said here consider the hoary problem of

whether the solar system computes solutions to its own equations of motion

(Fodor 1975, p.74). (A grander version asks whether the universe is a

computer dedicated to computing its own behaviour.) Certainly in some loose

sense the planets 'follow' the relevant law of motion (Kepler's law, say).

However, this hardly suffices to show that the planets execute an algorithm.

For one thing, Kepler's law simply is not a list of instructions each of which

calls for the performance of one or another of the primitive operations of

some given architecture. Kepler's law states a functional relationship f

between certain magnitudes but it is obviously not itself an algorithm that

takes arguments of f as inputs and delivers values of f as outputs. Such

algorithms do exist, of course. At least one of them requires a supporting

architecture that makes available the operation of shifting the bits in a

register one place to the right. Let SPEC be a specification of this algorithm

and its supporting architecture. Is the solar system an example of the type of

computing machine described by SPEC? To answer 'yes' is to suppose that the

solar system is a register machine - is to suppose that the solar system

consists of an interconnected structure of binary registers that are responsive

to the shift operation and the various other operations demanded by the

algorithm, for example binary addition and logical conjunction. Such a

supposition no doubt strikes you as ludicrous. Perhaps those who seriously

entertain the thought that the solar system computes will respond that it was

never an algorithm like this one that they had in mind. Well and good. The
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foregoing account of computation presents them with a challenge: if they

want to persist in the claim that the solar system is computing the function f

then they must describe for us the solar system's computational architecture

and detail the algorithm by which the solar system arrives at values of f.

Despite its naturalness the above account of computation will not do.

This follows immediately from a result that I will call Searle's Theorem:

For any entity x (with a sufficiently large number of discriminable parts)

and for any architecture-algorithm specification y there exists a labelling

scheme L such that <x, L> is a model of y.

In section IV I will prove Searle's Theorem. Searle's challenge to those who

think the concept of computation significant - and it is a good challenge - is to

modify the foregoing account in such a way as to avoid this trivialisation. I

show in section V that this can be done without departing from Turing's

characterisation of computation.

Interestingly enough Turing's friend and colleague Max Newman used

what is essentially a notational variant of Searle's Theorem as the basis of a

devastating objection to Russell's causal theory of perception (Newman

1928).4 In The Analysis of Matter Russell argued that although our

perceptions tell us nothing about the 'intrinsic character' of the external

stimuli that occasion them, we may nevertheless infer a great deal about 'the

structure of stimuli' (Russell 1927, p.227).

[I]t would seem that, wherever we infer from perceptions, it is

only structure that we can validly infer; and structure is what

can be expressed by mathematical logic . . . (Ibid. p.254.)
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Newman's objection is as follows.

A point to be emphasised is that . . . no . . . information about the

aggregate A, except its cardinal number, is contained in the

statement that there exists a system of relations, with A as field,

whose structure is an assigned one. For given any aggregate A, a

system of relations between its members can be found having

any assigned structure compatible with the cardinal number of

A. (1928, p.140.)

These statements [of Russell's] can only mean, I think, that our

knowledge of the external world takes this form: The world

consists of objects, forming an aggregate whose structure with

regard to a certain relation R is known, say W; but of the relation

R nothing is known . . . but its existence; that is, all we can say is,

'There is a relation R such that the structure of the external

world with reference to R is W.' Now . . . such a statement

expresses only a trivial property of the world. Any collection of

things can be organised so as to have the structure W, provided

there are the right number of them. (Ibid. p.144.)

We know of Russell's response to Newman's objection from a letter

included in the second volume of Russell's autobiography:

Dear Newman

Many thanks for sending me the off-print . . . I read it with

great interest and some dismay. You make it entirely obvious

that my statements to the effect that nothing is known about the

physical world except its structure are either false or trivial, and

I am somewhat ashamed at not having noticed the point for
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myself. It is of course obvious, as you point out, that the only

effective assertion about the physical world involved in saying

that it is susceptible to such and such a structure is an assertion

about its cardinal number. (Russell 1968, p.176.)

III

This section explains by means of an example what is meant by an

axiomatic specification of a machine architecture. I will consider a simple

machine M whose central processor consists of three eight-bit registers: an

instruction register I, a data buffer D and an accumulator A. To give an

example of the sort of thing that M does, if the instruction to perform an

addition enters I, the machine adds the contents of D to the contents of A and

stores the result in A. For simplicity I will ignore all matters concerning input,

output, data transfer between the cpu and memory, and program storage and

control, and I will omit the specification of any particular algorithm or

program. M is a von Neumann machine (i.e. a particular type of serial

processor). However, I emphasise that M appears here merely as an

illustration. As I have already said, the account of computation under

investigation applies both to serial and parallel architectures, including

connectionist networks. (It is interesting, incidentally, that Turing himself

seems to have been the first to consider building computing machines out of

simple, neuron-like elements connected together into networks in a largely

random manner; see Turing 1948, Copeland and Proudfoot 1996.)

The behaviour of M is described by means of a primitive term 'ACTION-

IS'. ('ACTION-IS' is a member of the same family as Belnap’s stit construction
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and Segerberg’s δ operator.5) The axioms for M (or rather for M simplified in

the ways just mentioned) are as follows. The function x␣_ is to be read æ␣the

contents of (register) x␣’ and ÿ may be read æ␣becomes␣’.

Ax1 If I_ = 00000001 ACTION-IS (Aú_ÿD_)

Ax2 If I_ = 00000010 ACTION-IS (A_ÿA_+D_)

Ax3 If I_ = 00000011 ACTION-IS (A_ÿA_Ù␣D_)

Ax4 If I_ = 00000100 ACTION-IS (A_ÿA_+D
=

)

And so on for the remaining instructions in the machine’s order code. Thus

Ax1 says that the displayed binary digits are the instruction to wipe the

accumulator and transfer the contents of D to the accumulator; and Ax4 says

that the displayed digits are the instruction to add the contents of the register

whose address is stored in D to the contents of the accumulator and store the

result in the accumulator.

The intended interpretation of a statement of the form æ␣if X ACTION-IS

Y␣’ is that the occurrence of X produces or brings about the action Y. Such a

statement is of the same logical æ␣strength␣’ as the statement that X causes Y, in

that each supports the counterfactual æ␣if X had occurred then Y would have

occurred␣’. However, the truth-condition of statements of the form æ␣if X

ACTION-IS Y␣’ cannot be couched in terms of physical causation, for the

construction must be applicable not only to real hardware but also to merely

conceptual machines. For example, we wish to say that each action of a Turing

machine is the result of its configuration (i.e. the combination of its state and

the scanned symbol). Unless we intend to speak metaphorically, the phrase æ␣is

the result of␣’ cannot be replaced here by æ␣is caused by␣’, for the machine is a

purely abstract entity.
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It is worth emphasising that æ␣if X ACTION-IS Y␣’ expresses a notion of

consequence or dependency that is stronger than that expressed by the

material implication X␣␣˙␣␣Y. Suppose that in the course of M’s operations the

instruction 00000100 happens never to enter I; the axioms nevertheless tell

us which action would have ensued if it had. Yet since any material

implication with a false antecedent is true, the following implications are all

true in the envisaged circumstances:

I_ = 00000100 ˙␣␣A_ ÿ A_+D
=

I_ = 00000100 ˙ A_ ÿ D_

I_ = 00000100 ˙ A_ ÿ A_+D_

I_ = 00000100 ˙ A_ ÿ A_ÙD_

Clearly the set of material implications of this form that are true of M gives

no guidance as to how M is designed to behave. Furthermore, since any

material implication with a true consequent is true it is equally the case that

if at some point in the computation the action A_ÿA_+D
=

 is performed then the

following are all true:

I_ = 00000001 ˙ A_ ÿ A_+D
=

I_ = 00000010 ˙ A_ ÿ A_+D
=

etc.

Yet the corresponding æ␣if . . . ACTION-IS␣-␣-␣-␣’ statements are all false.

As is well known, the problem of analysing counterfactual-supporting

statements is a hard one - so hard, indeed, that many logicians like to pretend

that a first-order extensional language suffices for all scientific purposes (see

for example Quine 1960). Yet an adequate theory of computation cannot be

couched in a purely extensional language.
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Quine proposes to paraphrase counterfactual-supporting statements by

means of a relative term 'M' ('alike in structure'). For example, 'x is soluble' is

to be paraphrased as ('in rough outline'): œy (Mxy & y dissolves) (1960, p.224).

This proposal cannot work in the present context, since the computing device

has no relevant structure over and above that detailed by the very axioms in

the architecture-algorithm specification that are to be paraphrased. In the

jargon, there are 'multiple physical realisations' of one and the same

computing device. For example, M may be realised by means of valves or

transistors or cogs and levers à la Babbage. The only feature that such

disparate physical entities need have in common is that all are realisations of

M.

Turing himself gives expression to this strong dependency relationship

by means of the phrase æ␣completely determined by␣’: each action of a Turing

machine is completely determined by its configuration. Here is his elegant

presentation of his analysis of computation.

We may compare a man in the process of computing a real

number to a machine which is only capable of a finite number of

conditions q1,q2,…,qk which will be called Æ␣m␣-configurations␣”.

The machine is supplied with a Æ␣tape␣” (the analogue of paper)

running through it, and divided into sections (called Æ␣squares␣”)

each capable of bearing a Æ␣symbol␣”. At any moment there is just

one square, say the

r-th, bearing the symbol S(r) which is Æ␣in the machine␣”. We may

call this square the Æ␣scanned square␣”. The symbol on the

scanned square may be called the Æ␣scanned symbol␣”.␣.␣. The

possible behaviour of the machine at any moment is determined



15

by the m␣-configuration qn and the scanned symbol S(r). This

pair qn , S(r) will be called the Æ␣configuration␣”: thus the

configuration determines the possible behaviour of the

machine.␣.␣. If at each stage the motion of a machine .␣.␣. is

completely  determined by the configuration, we shall call the

machine an Æ␣automatic machine␣”.␣.␣. In some of the configurations

in which the scanned square is blank (i.e. bears no symbol) the

machine writes down a new symbol on the scanned square: in

other configurations it erases the scanned symbol. The machine

may also change the square which is being scanned, but only by

shifting it one place to right or left. In addition to any of these

operations the m ␣-configuration may be changed.␣.␣. It is my

contention that these operations include all those which are used

in  the computation of a number. (1936, pp.231-2.)

IV

In this section I outline the proof of the theorem toward which Searle

gestures in the quotation given in section I, viz.:

For any entity x (with a sufficiently large number of discriminable parts)

and for any architecture-algorithm specification y there exists a labelling

scheme L such that <x, L> is a model of y.

The strategy is to pick some arbitrary physical entity e with a

comfortably large number of discriminable parts - Searle's wall or Hinck's pail

will do nicely - and show that there exists a labelling of e which enables one

to interpret the axioms for M in such a way that each of them is true of e. One
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then performs a universal generalisation: the proof makes no essential use of

features peculiar to e or M and so the result holds for any architecture-

algorithm specification and for any entity (with a sufficiently large number of

discriminable parts).

The first thing to be done is to settle on a way of correlating binary

numbers with physical structure. Let’s simply grant Searle, Hinckfuss, Lycan

et al. a method that enables one to correlate unique binary numbers with

regions of whatever physical object is in question. For instance, if the wall has

a high polymer content then the following simple method can be used: when

the number of polymer chains that end in a given space S is odd then S

tokens 0, and when the number is even S tokens 1.6

There is no hope of taking the three registers I, D and A to be three

particular regions of the wall. There are two fairly obvious reasons for this.

(1) We require the contents of the registers to remain constant unless altered

by an instruction. M may, for example, be running a program whose function

is to raise the number in D to a given power. The program does this by

repeatedly adding the contents of D to A. Clearly the contents of D must

remain constant throughout the computation. There is no reason to expect the

selected physical property (or properties) to remain constant in a given

region for precisely the required period. (2) We require the contents of the

registers to change appropriately during the execution of a program. We

cannot expect a mere wall to have physical properties that change in a way

responsive to the sequencing of instructions in whatever program M happens

to be running. Thus there is no region that can serve as the referent of æ␣I␣’. It

would be equally absurd to expect the physics of the wall to be responsive to

the demands of binary arithmetic; so there is no region that can serve as the
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referent of æ␣A␣’. The solution is to use entities of greater abstraction as

referents of the terms æ␣I␣’, æ␣A␣’ and æ␣D␣’. (I call this procedure 'Searlification'.)

Each of these terms is to be interpreted as a function whose value at any

point in the computation is the contents of the register at that point. (A

similar construction serves to interpret the indirect address 'D
=

'.) If an explicit

treatment were being given of those of M's axioms that contain terms

designating an input register and an output register then these terms would

be dealt with in just the same way.

To make matters specific let’s suppose that M (the real M) is running a

particular program, say Wordstar, and let’s consider a particular run of the

program lasting, say, for n of M’s clock-cycles. (M performs one instruction

per cycle or æ␣beat␣’ of its internal clock.) We can tabulate the contents of I, A, D

and D_ at the end of each cycle of the run (thus the column headed A_ shows

the contents of the accumulator after  that cycle’s instruction has been

executed). The result is a table of labels. Columns two through five display not

physical states of components of M but binary numbers that label such states.

Cycle
-------

I_
---

D__
---

A__
---

D
=

---

1 i1 d1 a1 x1

2 i2 d2 a2 x2
. . . . .

. . . . .

. . . . .

n in dn an xn

TABLE 1

Each cycle c ends (we may suppose) at a precise moment tc. This will be

a moment in the history of the wall. Call such moments the designated
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moments. Using the hypothesised method for correlating binary numbers

with regions of the wall one can assign distinct regions of the wall as it is at a

designated moment tc to each of ic, dc, ac and xc. Making these assignments

yields a second table. Unlike Table 1 this is a table not of labels but of regions

of the wall. I write |i1| to name the region assigned to i1, and so on; |i1| may be

pronounced æ␣the molecular encoding of the binary number i1␣’. The terms in

the first column refer to the designated moments for this particular run of the

program, in the second column to the molecular encodings of the contents of I,

and so on.

T
---

| ␣ ␣ ␣I ␣ ␣ _ |
---

| ␣ ␣ ␣D ␣ _ ␣ |
---

| ␣ ␣A _ ␣ ␣ |
---

| ␣ ␣ ␣D ␣ ␣ |
=

---

t1 |i1 | |d1 | |a1 | |x1 |
. . . . .

. . . . .

. . . . .

tn |i n | |d n | |a n | |x n |

TABLE 2

Tables 1 and 2 taken together constitute the desired labelling of the

wall. The next three paragraphs develop some terminology required for the

demonstration that there exists an interpretation of M's axioms such that each

is true of the wall so labelled. (Readers who are prepared to take the details

for granted may wish to skip them.)

Let I  be the function whose domain is the set T (i.e. the set of

designated moments for this run of the program) and whose range is the set |

I_|, and similarly for D, A, and X.  I will be used to interpret occurrences of the

symbol 'I' in the axioms, D to interpret occurrences of 'D' and A of 'A'. X

interprets the indirect address used in Ax4.
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t` will be used to denote the designated moment immediately preceding

a given designated moment t. Notice that A(t`) represents the state of the

accumulator which immediately precedes the state  A(t).

Let tj be any designated moment such that ij␣=␣00000010 (i.e. such that ij

is the instruction to add the contents of D to the contents of A). Consider the

set of all ordered pairs <<␣A(tj`),␣␣D(tj)>,␣␣A(tj)>, one for each such moment tj. By

construction, this set is a function. Call it PLUS. Similarly, let tk be a

designated moment such that ik␣␣=␣␣00000011 (i.e. the instruction to multiply

the contents of D by the contents of A). Consider the set of all ordered pairs

<<␣A(tk`),␣␣D(tk)>,␣␣A(tk)>. Again this set is a function; call it TIMES. Lastly, let tl

be a designated moment such that il ␣␣=␣␣00000100 (i.e. the instruction to add

the contents of the register whose address is stored in D to the contents of A).

The function PLUS† is the set <<␣A(tl`),␣␣X(tl)>,␣␣A(tl)>.

The displayed axioms for M are interpreted as follows (the quantifier

ranges over designated moments):

Ax1: Œt( I(t) = |00000001| ␣␣˙␣␣ A(t) = D(t) )

Ax2: Œt( I(t) = |00000010| ␣␣˙␣␣ A(t) = PLUS(<␣A(t`),␣␣D(t)␣>) )

Ax3: Œt( I(t) = |00000011| ␣␣˙␣␣ A(t) = TIMES(<␣A(t`),␣␣D(t)␣>) )

Ax4: Œt( I(t) = |00000100| ␣␣˙␣␣ A(t) = PLUS†(<␣A(t`),␣␣D(t)␣>) ).

It is easily verified that each of these statements is true.

Under the interpretation provided, then, M’s axioms are true of the wall.

This is the technical analogue of Searle's claim that 'there is some pattern of

molecule movements that is isomorphic with the formal structure of

Wordstar' (op. cit. p.209). Since the construction I am calling Searlification is

quite generally applicable the argument will go through no matter what

entity and what architecture-algorithm specification are under consideration
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(subject only to the usual fine print about the cardinality of the parts). This

completes the proof of Searle's Theorem.

Reflection on the model presented in this section will yield the promised

criteria for guarding the analysis given above of the predicate 'is computing

the function f' from models of an architecture-algorithm specification that are

of the wrong kind to sustain the analysis.

V

A nonstandard interpretation of a theory is an interpretation that does

not respect the intended meanings of the terms of the theory.7 (When

mathematical logicians speak of nonstandard interpretations of number

theory, analysis and set theory they have in mind interpretations whose

domains are not isomorphic to the domain of the intended interpretation. In

the more general sense of the term 'nonstandard interpretation' in use here

the domain of such an interpretation may or may not be isomorphic to the

domain of the intended interpretation.) For example, a nonstandard

interpretation of some statements concerning European geography might

assign the number 1 as referent  of the symbol æ␣London␣’ and the number 16

as the referent of æ␣Moscow␣’. Sentences of the form æ␣a is north of b␣’ might be

assigned truth conditions of the form æ␣the referent of Æ␣b␣” < the referent of

Æ␣a␣”␣’. In this modelling the sentence æ␣Moscow is north of London␣’ is true, but is

no longer about Moscow and London.

What is perhaps the most spectacular nonstandard interpretation of

them all is due to Skolem. Building upon earlier work by Löwenheim he

proved that if there is some interpretation under which the axioms of a
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theory are true, then they are true under an interpretation whose domain is

the set of natural numbers (for any first-order theory whose language is

countable and contains the identity predicate).8 The result of applying this

theorem to the theory of real numbers is known as Skolem’s paradox. It is an

axiom (or theorem) of real number theory that the cardinality of N (the set of

all natural numbers) is less than the cardinality of R (the set of all real

numbers). (That is, the set of all real numbers is larger than any set of natural

numbers.) Yet the Löwenheim-Skolem theorem tells us that this axiom is true

under an interpretation that countenances nothing but natural numbers and

sets thereof. How, one might ask, can a sentence entailing the existence of a

set larger than any set of natural numbers be true in a universe where there

are no sets other than sets of natural numbers? Or to take a more mundane

example, how can the sentence æ␣Skolem is Norwegian␣’, which entails æ␣œx (x is

Norwegian)␣’, be true under an interpretation that countenances no

Norwegians, only Swedes?

There is no real difficulty here. Perhaps the latter interpretation assigns

the following truth-condition:

æ␣Skolem is Norwegian␣’ is true iff the referent of æ␣Skolem␣’ ‰ K

where K is some subset of the domain (perhaps the set of unmarried

members of the domain). Provided the object assigned as the referent of the

symbol æ␣Skolem␣’ is indeed in K, the sentence æ␣Skolem is Norwegian␣’ is true

under the interpretation; but it is clearly no longer about Skolem and

Norwegians. In the case of an interpretation within the natural numbers of

real number theory, some set of naturals is assigned as the referent of the

symbol æ␣R ␣’. The sentence æ␣card N ␣␣␣<␣␣␣card R ␣’ is made true by the expedient of

ensuring that the model contains no 1–1 function that maps this set onto
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whatever set is assigned as referent of æ␣N ␣’. (Similarly one could make the

sentence æ␣Moscow is the most northerly European city␣’ true in the model

mentioned earlier by choosing not to include any numbers greater than 16 in

the domain of the model.) In summary, while axioms containing the term æ␣R ␣’

are true under the nonstandard interpretation I have sketched, the axioms

thus interpreted are no longer about the set of all real numbers.

The interpretation I have described for the axioms of M is a

nonstandard one. We may say that the wall Æ␣computes␣” and mean by this

nothing more than that the axioms for M, a computer, are true under the

interpretation I have described. However, it would be an elementary error to

infer from this that the wall computes in any genuine sense - just as it would

be an error to infer that some countable sets are uncountable from the fact

that the axiom æ␣card␣␣␣N ␣ ␣ ␣<␣ ␣ ␣card␣␣␣R ␣’ is true in Skolem’s countable model of

number theory. The intended meaning of this axiom is that R is uncountable

(i.e. is larger than any set of natural numbers), but this does not mean that if

the axiom is true under a nonstandard interpretation then whatever R refers

to under that interpretation is uncountable. Similarly, under their intended

interpretation the axioms for M add up to the proposition that M is a von

Neumann computer, but this does not mean that if the axioms are true under

a nonstandard interpretation then whatever they are true of under that

interpretation is a von Neumann computer.

Where the pair <e, L> is a model for some SPEC but only under a

nonstandard interpretation of SPEC I will say that <e, L> is a nonstandard

model of SPEC. A model that is not nonstandard will be called honest. Searle's

Theorem shows that according to the analysis given in section II the predicate
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'is computing the function f' is trivially true of very many entities. I suggest

the following modification to the analysis:

Entity e is computing function f if and only if there exist a labelling

scheme L and a formal specification SPEC (of an architecture and an

algorithm specific to the architecture that takes arguments of f as inputs

and delivers values of f as outputs) such that <e, L> is an honest model of

SPEC.

The claim, then, is that the model constructed in section IV is a

nonstandard one. Why exactly? What are the grounds for insisting that the

model fails to respect the intended meanings of the terms of the axiomatic

theory? These are threefold. First, the axiomatic theory under consideration

and those like it - the various dynamic logics, for example - are intended (in a

phrase of Segerberg's (1989, p.248)) as logics of computer action. However, all

the computational activity occurred outside the wall, in the course of

obtaining Table 1, which is simply a record of the activity within the cpu of

the machine that actually performed the computation. Once Table 1 is secured

the labelling scheme is constructed from it ex post facto. The wall under this

novel description is at most a passive æ␣scoreboard␣’ and is no more an active

participant in the computation than the scoreboard is an active player in a

game of billiards. The axioms for M certainly contain the term 'ACTION-IS'

but the fact that the axioms (as interpreted) are true of the wall goes no way

toward showing that the wall acted in accordance with the instructions in the

algorithm. The wall so acted only if the referent of æ␣R ␣’ in Skolem’s countable

model is uncountable!

Second, the nonstandard interpretation introduces unintended temporal

specificity into the theory. The labelling scheme used in the model is, of
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course, incomplete in that the scheme identifies the regions of the wall that

bear labels at the designated moments t1, ..., tn but provides no information

concerning which regions of the wall are the label-bearers at times prior to t1

or subsequent to tn. This is in sharp contrast to the unmarked case, where the

labelling scheme remains applicable throughout the lifetime of the entity

(assuming no hardware modifications), certain fixed regions of the entity, or

disjunctions of such, being designated ab initio as label-bearers. This

incompleteness in the labelling scheme shows up in the interpretation of the

construction æ␣if . . . ACTION-IS␣-␣-␣-␣’, via the presence of the universal

quantifier ranging over the designated moments t1, ..., tn. The axioms as

interpreted have no entailments concerning times lying outside this range,

whereas under their intended interpretation the axioms are (and entail)

conditional statements that are true at any moment during the normal

functioning of the device. (Is the wall perhaps in a state of malfunction at all

times prior to t1 and subsequent to tn? Hardly. At the whim of the modeller

the wall can be made to run the program again, say through the moments

tn+1, ..., t2n.) Moreover, under the nonstandard interpretation the whole

axiomatisation is, so to speak, in the past tense, whereas to describe a

physical entity as a computing machine of a certain kind is to envisage being

able to predict aspects of its physical behaviour on the basis of its

architecture-algorithm specification and its labelling scheme. That is to say,

the intended meaning of the term 'ACTION-IS' certainly involves no

restriction to past actions. Yet it is necessarily the case that under the

nonstandard interpretation each axiom is a statement about the past. It is, of

course, the ex post facto nature of the labelling scheme that introduces these

unwanted temporal specificities into the interpretation.
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Third, the construction æ␣if . . . ACTION-IS␣-␣-␣-␣’ is interpreted by means of

material implication (the truth-condition assigned to each axiom is a

universally quantified material implication). Nor can a better interpretation

be found for this construction within the context of an attempt to show that

the wall serves to model M's axioms. There are possible worlds differing

minimally from the actual world in which the axioms as interpreted have true

antecedents and false consequents. Consider:

Œt( I(t) = |00000011| ␣␣˙␣␣ A(t) = TIMES(<␣A(t`),␣␣D(t)>) ).

Suppose that in the actual world I(t)␣␣=␣␣␣|00000010|. That is to say, the region

which is the value of I at the moment t is a molecular encoding of the binary

number 00000010 (this number being M’s instruction to add D_ to A_). Take a

possible world w in which the properties of this same region are just

sufficiently different to make it a molecular encoding of the binary number

differing from the foregoing only in its least significant digit. The regions

denoted by A(t), A(t`) and D(t) code the same numbers in w as they do in the

actual world. (If quantum mechanics is even roughly true then such a world

is not only nomologically possible but may also be indistinguishable from the

actual world through all history up to a time t minus delta.) Say for

definiteness that A(t`)␣␣=␣␣|00000001| and D(t)␣␣=␣␣|00000010|. So from Table 2

A(t)␣␣=␣␣|00000011|. Suppose further that the computation represented in Table

2 is such that

œu( I(u)␣␣=␣␣|00000011| & A(u`)␣␣=␣|␣00000001| &␣␣␣D(u)␣␣=␣␣|00000010|).

Since TIMES is a function it follows that

TIMES(<A(t`), D(t)>)␣=␣|00000010|.
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So it is true in w that I(t)␣␣=␣␣|00000011| and false in w that A(t)␣␣=␣␣TIMES(<A(t`),

D(t)>). There is, then, no conditional connective Õä with a possible worlds

semantics such that

Œt( I(t)␣=␣|00000011| Õä A(t)␣=␣TIMES(< A(t`), D(t)>) )

is true. The same goes for the remaining axioms.

Why does it matter that æ␣if . . . ACTION-IS␣-␣-␣-␣’ has been interpreted as

material implication? Because, as previously remarked, the axioms under that

interpretation fail to support assertions about the counterfactual behaviour of

M. Whereas given the intended meaning of the æ␣if . . . ACTION-IS␣- ␣- ␣- ␣ ’

construction the axioms do licence assertions about the counterfactual

behaviour of M. (For example, under its intended interpretation axiom 3

licences the assertion that if 00000011 had been in the instruction register at

t then the machine would have performed the replacement shown in the

axiom.) æ␣If . . . ACTION-IS␣-␣-␣-␣’ expresses a stronger relationship than material

implication and that is the third reason to say that the interpretation fails to

respect the intended meanings of terms occurring in the axioms. The strong

dependency relationship that Turing refers to in the course of explaining the

concept of a computing machine is simply absent from the 'machine'

consisting of labelled regions of the wall. Only if Turing had made no mention

of this strong dependency relationship would Searle's criticism of him in the

above quotation be just.

In summary, I suggest two necessary conditions for honesty. First, the

labelling scheme must not be ex post facto. This requirement guards the class

of honest models from intruders that fail to respect the intended meanings of

the terms of the axiomatic theory in ways of the sort outlined in the first and

second of the above three criticisms. Second, the interpretation associated
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with the model must secure the truth of appropriate counterfactuals

concerning the machine's behaviour. Either of these two requirements suffices

to debunk the alleged problem cases.

VI

This section criticises some alternative answers to the question 'What is

computation?'.

1. Deutsch gives the following characterisation of computation:

[A] computing machine is any physical system whose dynamical

evolution takes it from one of a set of 'input' states to one of a

set of 'output' states. The states are labelled in some canonical

way, the machine is prepared in a state with a given input label

and then, following some motion, the output state is measured . .

. [T]he measured output label is a definite function f of the

prepared input label; . . . the machine is said to 'compute' the

function f. (1985, p.97.)

This account falls easy prey to Searle's Theorem. Hinck's pail is a

physical system whose dynamical evolution takes it from an 'input' state to

an 'output' state. The states are labelled in some canonical way by means of a

suitable encoding/decoding function. Someone who is, so to speak, told exactly

where to look in the bucket can measure the 'output' state and determine its

label. So the bucket is computing the function that relates the input labels to

the output labels. Of course, the labelling scheme in question is entirely ex

post facto (as in Tables 1 and 2).
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There is something else very wrong about Deutsch's analysis: it makes

no mention of the notion of an algorithm. In my view this notion should lie at

the heart of an account of computation. Consider a clockwork clock. The hands

show 12. This is the 'input' state. The label is simply the numerical

specification of the time shown. The clock runs for n minutes. The ensuing

position of the hands is the 'output' state. Is the clock computing the function

that relates the input label to the output label? According to Deutsch's account

Yes; according to my account No. The elementary steps of an algorithm for

deriving the output labels from the input labels might consist, for example, of

multiplications, additions and subtractions. No honest way of modelling a

specification of such an algorithm and an architecture for implementing it (i.e.

an architecture that makes these elementary operations available) will be

able to locate such steps in the functioning of the clock. Similar remarks apply

to the issue of whether the solar system computes solutions to its own

equations of motion (section II above). According to Deutsch's account it does

but according to an account that takes the notion of an algorithm and its

supporting architecture seriously the solar system does not compute.

Nonstandard models of any architecture-algorithm specification are easily

obtained but there is no reason to think that the challenge of providing an

honest model based on the solar system of a suitable algorithm and

supporting architecture can be met.

The examples of the clock and the solar system generalise. Any physical

system that is describable as producing 'output' from 'input' - and is there

any that is not? - has a labelling in Deutsch's sense, and so on his account the

system computes the function relating the input labels to the output labels. In

consequence the claim that the brain computes loses its status as a serious
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empirical hypothesis. Protect Deutsch's account from the radical trivialisation

it suffers at the hand of Searle's Theorem (by means of the apparatus detailed

in section V) and the account will still be too wide.

2. The analysis of computation presented by Cummins is responsive to

intuitions such as these concerning the clock and solar system. He writes:

[F]unctions need not be computed to be satisfied. Set mousetraps

satisfy a function from trippings to snappings without computing

it, and physical objects of all kinds satisfy mechanical functions

without computing them. The planets stay in their orbits without

computing them. (1989, p.91.)

He glosses the notion of a function's being satisfied: a device satisfies a

function g when 'the arguments and values of g are literally states of' it

(p.89).

Functions associate values with arguments. To see a device as

satisfying a function, therefore, is to see it as having inputs and

outputs . . . and to see these as arguments and values. (Ibid.

p.164.)

Cummins proposes the following analysis of when a function is being

computed:

Computing reduces to program execution, so our problem

reduces to explaining what it is to execute a program. The

obvious strategy to exploit is the idea that program execution

involves steps, and to treat each elementary step as a function

that the executing system simply satisfies. . . Program execution

reduces to step satisfaction. (1989, pp.91-92.)
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This analysis too is trivialised by Searle's Theorem, as is easily shown

by considering the elementary steps of a program for the machine M. A

typical example of such a step is

Add the contents of D to the contents of A and store the result in A.

We may regard this step as taking two binary numbers as input and

delivering a single binary number as output. Cummins invites us to treat each

elementary step as a function that an executing system can satisfy. In this

case the function will be one whose values are label-bearing states of the

executing system and whose arguments are pairs of such states. Under the

labelling proposed in section IV the wall satisfies the function in question. On

each clock cycle x at which the register I contains the instruction for

performing the above step it is the case that

PLUS(<␣A(tx`),␣␣D(tx)␣> ) = A(tx).

The same goes for all the other elementary steps of the program. So according

to Cummins' account the wall is executing the program.

Moreover Cummins regards computation as a causal process:

[A] computation [is] a causal process specified abstractly as an

algorithm. (Cummins and Schwarz 1991, p.63.)

As I remarked earlier, a causal account of computation lacks the necessary

generality. Abstract devices such as Turing machines compute. Consider the

case of a programmed simulation of a Turing machine. The virtual Turing

machine is computing, but there are no causal relationships between the

contents of the virtual machine's tape and the virtual machine's actions. The

relevant causal network has activities of the underlying real machine at its

nodes, not activities of the virtual machine.
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An analysis of computation in terms of causation is intolerably narrow.

Even if that fact is disregarded Cummins cannot protect his step-satisfaction

account of computation from trivialisation by adding a rider to the effect that

if states are to satisfy a function then the value-state must be a causal

outcome of the argument-state(s). For there exists a labelling of the wall such

that label-bearing states satisfy the appropriate functions even in this

stronger sense of 'satisfy'. (Or if that's not true then pick a larger wall!) The

trick, of course, is to select states for labelling that are causally related in the

required ways. Staying with the previous example of an elementary step, the

state |ax| must be chosen in such a way that (as well as having the right

structural properties to bear the label ax under the encoding/decoding

function being used) it is a causal outcome of the states |a(x-1)|, |dx|. The

function PLUS is then satisfied in the stronger sense.

3. Lycan’s own way of dealing with Hinck’s pail is not, as it stands,

successful. He writes:

[W]e see . . . why Block's group organisms are admissible as

sentient beings but Hinckfuss's pail of water is not: the

homunculi-head . . . incorporate[s] Ç-ers, Í-ers, and Æ␣-ers␣” of

countless other types, courtesy of the bureaucrats who are doing

all the work; the pail of water does not contain any

Æ␣-ers␣” of any kind that is mentioned in a homunctionalist

program, precisely because it is not organised in the relevant

way, even if the de facto motions of some of the molecules in the

pail happen to ape the motions that would be made by an
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organism that was functionally organised on the human model.

(1981, p.41; see also 1987, p.34.)

As ever, let M's axioms serve as an example - simplistic but adequate

for the purpose in hand - of a functionalist architectural specification. Lycan's

thought is that the specification requires certain kinds of ers that the pail

cannot supply. But let er1 .␣.␣. ern be a list of the various ers involved in M’s

architecture (instruction register, accumulator, etc.) and consider a model

founded on the pail of the sort described in section IV. Under the

interpretation associated with the model a referent for each term æ␣er1␣’, .␣.␣. ,

æ␣ern␣’ is indeed furnished by the pail; so Lycan's claim is false. (To be sure

each of M's registers is realised in a highly distributed way in the pail or wall,

but then so would they be in a connectionist modelling of M.) Lycan's attempt

to defuse the problem cases simply underestimates the Skolemesque tactics

that underlie them.

VII

It is the computational theory of mind, and not extant definitions of

computation, that is the principal target of Searle and Hinckfuss. Numerous

other colourful problem cases are to be found in the critical literature on

computational functionalism. All the various cases can be divided into two

groups. Cases in Group I are typified by Hinck's pail and the Wordstar wall.

All can be dealt with by means of the distinction between nonstandard and

honest models developed here. The cases in Group II are typified by Block's

ingenious and well-known thought experiments involving the economy of

Bolivia and the population of China. Group II cases pose a prima facie
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challenge to computational functionalism but have no tendency - not even a

prima facie one - to show that Turing's analysis of computation is trivialisable

and so are not germane to the present discussion. Nevertheless it is

worthwhile briefly examining one of Block's examples in order to establish

that it does indeed pose no challenge to the account of computation offered

here (and nor, for that matter, to Deutsch's or Cummins' account). I shall

suggest moreover that the Group II cases in fact have no force against

computational functionalist theories of mind.

If computational functionalism is true then there exists an architecture-

algorithm specification SPEC-BLOCK such that if for any system x and labelling

L <x, L> is an honest model of SPEC-BLOCK then x is cognitively equivalent to

Block. 'Suppose', says Block, 'we convert the government of China to

functionalism, and we convince its officials that it would enormously enhance

their international prestige to realize a human mind for an hour. We provide

each of the billion people in China . . . with a specially designed two-way radio

that connects them in the appropriate way to other persons . . .' (1978, p.279).

If each of the billion people is told to obey an appropriate instruction and

does so faithfully then the resulting realisation of SPEC-BLOCK will be a

system that is cognitively equivalent to Block. (In Block's own description of

the scenario each person is given an instruction corresponding to a single line

in a Turing machine table; the precise nature of the instructions will vary

depending on the computational architecture in question.)

Block writes:

Remember that a machine table specifies a set of conditionals of

the form: if the machine is in Si and receives input Ij it emits

output Ok and goes into Sl. Any system that has a set of inputs,
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outputs and states related in the way described realizes that

machine table, even if it exists only for an instant. For the hour

the Chinese system is Æ␣on␣”, it does have a set of inputs, outputs

and states of which such conditionals are true. (1978, p.279.)

What Block says here is unpersuasive. For there exists a labelling of the

wall such that these indicative conditionals are true of the wall, yet the wall

does not realise a program or machine table. As Searle's Theorem shows, it is

simply false that 'any system that has a set of inputs, outputs and states

related in the way described realises that machine table'. The points Block

ought to emphasise are that the labelling of the Chinese system is not ex post

facto and that the physical design of the system underwrites all the relevant

counterfactuals.

There can be no dispute over the fact that Block's system would

compute. It genuinely runs the algorithm, genuinely computes the function

involved. The cutting edge of hardware engineering consists in the search for

hitherto unconsidered ways of realising computational architectures (witness

the progression from mercury delay lines to cathode ray tube storage to

semiconductors). To match Block's fantastical computer with another: if it

turns out that the state transitions in the digestive system of the Chinese

silkworm can be manipulated so that - under a certain labelling - the

digestive system forms a practicable and ultra cheap realisation of the

architecture-algorithm specification commonly used by manufacturers of

handheld calculators, then this fact will be seized upon by engineers eager to

exploit it, not regarded as a counterexample to any account of computation

that entails it. Block's hitherto unconsidered way of physically realising an

architecture-algorithm specification is simply that.
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Is Block's fantastical system really a counterexample to computational

functionalism? No. The system is a genuine realisation of SPEC-BLOCK, but it is

a realisation that could exist only in fairyland. I have no firm intuitions about

fairyland, save that one should expect the bizarre; yet Block’s argument

against functionalism is essentially an appeal to an intuition that he expects

us to have concerning the system, namely that it æ␣lack[s] mentality␣’. (p.277) I

certainly have no inclination to insist that in fairyland this brain-of-slaves

would lack mentality.

VIII

Searle’s concession (in the passage quoted in section I) that it is

'possible to block . . . universal realisability' - by which he means block the

result that æ␣everything would be a digital computer␣’ (1992, p.208) - seems to

me to overturn his main argument.9 Here is Searle's summary of the relevant

portion of his argument:

The point is not that the claim 'The brain is a digital computer' is

simply false. Rather, it does not get up to the level of falsehood.

It does not have a clear sense. The question 'Is the brain a digital

computer?' is ill defined. If it asks, 'Can we assign a

computational interpretation to the brain?' the answer is

trivially yes, because we can assign a computational

interpretation to anything. If it asks, 'Are brain processes

intrinsically computational?' the answer is trivially no, because

nothing is intrinsically computational. . . (1992, p.225.)
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Searle offers the claim that brains are not 'intrinsically  digital

computers' as a consequence of his claim that 'syntax is not intrinsic to

physics' (pp.208, 225). The latter claim is certainly true: the labels are not

intrinsic to the physics of the labelled device. There are no discrete binary

states intrinsic to the physics of my Macintosh. Binary labels are attached

according to whether certain non-discrete variables (e.g. voltage, degree of

magnetisation) fall within one or the other of two ranges. If the truism that

syntax is not intrinsic to physics implies that brains are not 'intrinsically

digital computers' then by parity it implies that no entity is intrinsically a

digital computer. In Searle's sense there is nothing 'intrinsically

computational' about neuron-firings; and nor is there anything 'intrinsically

computational' about micro-chip events. Searle is telling us no more than that

if the brain is a computer, then it is so only in the sense in which all other

computers are computers. This is hardly interesting.

It is Searle's first way of interpreting the question 'Is the brain a digital

computer?' that is the important one: 'Can we assign a computational

interpretation to the brain?'. (Searle is careful to distinguish the question 'Can

we assign a computational interpretation to the brain?' from the question 'Can

the operations of the brain be simulated on a digital computer?' (1992,

p.200).) His claim that the answer to the question thus interpreted is 'trivially

yes' is mistaken: 'universal realisability' is false, as I have argued.

The rock-bottom issue in cognitive science is precisely whether, and to

what extent, the brain can be assigned 'a computational interpretation'. If the

argument presented here is correct, this is an empirical issue. It is always an

empirical question whether or not there exists a labelling of some given

naturally occurring system such that the system forms an honest model of
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some architecture-algorithm specification.10 And notwithstanding the truism

that 'syntax is not intrinsic to physics' the discovery of this architecture-

algorithm specification and labelling may be the key to understanding the

system's organisation and function.
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NOTES

1 I am grateful to Mike Resnik, John Searle, Krister Segerberg, Kim

Sterelny and Tim Williamson for comments on earlier versions of this

material.

2 But not the necessity of Turing's analysis as usually interpreted, that is,

as embodying the so-called Church-Turing thesis. See my 1996b, 1997 and

note 3 below.

3 Where the weights, thresholds, activation levels etc. are specifiable by

means either of rational numbers or else real numbers that are computable in

Turing's sense of 'computable number' then the step-by-step procedure is

what I call a classical algorithm; where other real numbers may figure as

weights etc., the step-by-step procedure is a nonclassical algorithm. Any

Turing-equivalent device can execute only classical algorithms. The class of

architectures capable of executing nonclassical algorithms is diverse and

includes purely digital machines. I develop the classical/nonclassical

distinction in 1996b and 1997.

4 I am grateful to Philip Catton for drawing Newman's article to my

attention. Newman's objection to Russell is discussed by Demopoulos and

Friedman 1985.

5 See, for example, Belnap 1996, Segerberg 1996.

6 I owe this suggestion to Philip Catton.

7 See also Copeland 1979, 1986 and 1994.

8 Chang and Keisler 1973, pp.66-68.

9 I discuss other aspects of Searle’s attack on cognitive science in 1993a

and 1993b chapters 6 and 10.
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10 For another argument, quite different in approach from the one

presented here, in support of the claim that the question 'Is the brain a digital

computer?' is an empirical one, see Copeland and Proudfoot 1994.
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